CHAPTER 12

REGISTERS AND COUNTERS

Contents

12.1 Registers and Register Transfers

12.2 Shift Registers
12.3 Design of Binary Counters
12.4 Counters for Other Sequences
12.5 Counter Design Using S-R and J-K Flip-Flops
12.6 Derivation of Flip-Flop Input Equations--Summary

Objectives

1. Explain the operation of registers. Understand how to transfer data between registers using tri-state bus
2. Explain the shift register operation, how to build them and analyze operation. Construct a timing diagram for a shift register
3. Explain the operation of binary counters, how to build them using F/F and gates and analyze operation.
4. Given the present state and desired next state of F / F, determine the required F/F/ inputs
5. Given the desired counting sequence for a counter, derive F/F input equations.
6. Explain the procedures used for deriving F/F input equation.
7. Construct a timing diagram for a counter by tracing signals through the circuit.

12.1 Registers and Register Transfers

Figure 12-1 . 4-Bit D Flip-Flop Registers with Data, Load, Clear, and Clock inputs

Grouped together D F/F

Using gated clock(a)
F/F with clock enable
Figure 12-1(b)

Symbol for the 4-bit register using bus notation

Figure 12-1(c)

12.1 Registers and Register Transfers

Data Transfer Between Registers

12.1 Registers and Register Transfers

Logic Diagram for 8-Bit Register with Tri-State Output

(b)
(a)

12.1 Registers and Register Transfers

Data Transfer Using a Tri-State Bus

12.1 Registers and Register Transfers

How data can be transferred?

The operation can be summarized as follows:

> If $E F=00, A$ is stored in $G($ or $H)$.
> If $E F=01, B$ is stored in $G($ or $H)$.
> If $E F=10, C$ is stored in $G($ or $H)$.
> If $E F=11, D$ is stored in $G($ or $H)$.

12.1 Registers and Register Transfers

Parallel Adder with Accumulator

N -Bit Parallel Adder with Accumulator

12.1 Registers and Register Transfers

Adder Cell with Multiplexer (Figure 12-6)

12-2 Shift Registers

Right-Shift Register

(a) Flip-flop connections

12-2 Shift Registers

8-Bit Serial-in, Serial-out Shift Register

(a) Block diagram

(b) Logic diagram

12-2 Shift Registers

Typical Timing Diagram for Shift Register

12-2 Shift Registers

Parallel-in, Parallel-Out Right Shift Register

(a) Block diagram

(b) Implementation using flip-flops and MUXes

12-2 Shift Registers

Shift Register Operation (Table 12-1)

Inputs		Next State				Action
Sh(Shift)	$L($ Load $)$	Q_{3}^{+}	Q_{2}^{+}	Q_{1}^{+}	Q_{0}^{+}	
0	0	Q_{3}	Q_{2}	Q_{1}	Q_{0}	no change
0	1	Q_{3}	Q_{2}	Q_{1}	Q_{0}	load
1	\times	SI	Q_{3}	Q_{2}	Q_{1}	right shift

12-2 Shift Registers

Timing Diagram for Shift Register

12-2 Shift Registers

The Next-state equations for the F/F are

$$
\begin{aligned}
& Q_{3}^{+}=S h^{\prime} \cdot L^{\prime} \cdot Q_{3}+S h^{\prime} \cdot L \cdot D_{3}+S h \cdot \mathrm{SI} \\
& Q_{2}^{+}=S h^{\prime} \cdot L^{\prime} \cdot Q_{2}+S h^{\prime} \cdot L \cdot D_{2}+S h \cdot Q_{3} \\
& Q_{1}^{+}=S h^{\prime} \cdot L^{\prime} \cdot Q_{1}+S h^{\prime} \cdot L \cdot D_{1}+S h \cdot Q_{2} \\
& Q_{0}^{+}=S h^{\prime} \cdot L^{\prime} \cdot Q_{0}+S h^{\prime} \cdot L \cdot D_{0}+S h \cdot Q_{1}
\end{aligned}
$$

12-2 Shift Registers

Shift Register with Inverted Feedback (Figure 12-12) \rightarrow Johnson Counter

(a) Flip-flop connections

(b) State graph

A 3-bit shift register 12-12(a)
Successive states 12-12(b)

12.3 Design of Binary Counters

A binary counter using three T F/F to count clock pulses

Synchronous
Binary Counter
(Figure 12-13)

Counting sequence
CBA: $000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000$

12.3 Design of Binary Counters

State Table for Binary Counter (Table 12-2)

Present State C $\quad B \quad A$			Next State			Flip - Flop Inputs		
			C^{+}	B^{+}	A^{+}	T_{C}	T_{B}	$T_{\text {A }}$
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

12.3 Design of Binary Counters

Karnaugh Map for Binary Counter (Figure 12-14)

$$
T_{a}=1, \quad T_{b}=A, T_{c}=A B
$$

12.3 Design of Binary Counters

Binary Counter with D Flip-Flops (Figure 12-15)

12.3 Design of Binary Counters

The D input equations derived from the maps are

$$
\begin{aligned}
& D_{A}=A^{+}=A^{\prime} \\
& D_{B}=B^{+}=B A^{\prime}+B^{\prime} A=B \oplus A \\
& D_{C}=C^{+}=C^{\prime} B A+C B^{\prime}+C A^{\prime}=C^{\prime} B A+C(B A)^{\prime}=C \oplus B A
\end{aligned}
$$

Karnaugh Maps for D Flip-Flops (Figure 12-16)

12.3 Design of Binary Counters

State Graph and Table for Up-Down counter (Figure 12-17)

$C B A$	$C^{+} B^{+} A^{+}$	
	U	D
000	001	111
001	010	000
010	011	001
011	100	010
100	101	011
101	110	100
110	111	101
111	000	110

When $\mathrm{D}=1$, Down counting

12.3 Design of Binary Counters

The up-down counter can be implemented using D F/F and gate

Binary Up-Down Counter
(Figure 12-18)

12.3 Design of Binary Counters

The corresponding logic equations are

$$
\begin{aligned}
& D_{A}=A^{+}=A \oplus(U+D) \\
& D_{B}=B^{+}=B \oplus\left(U A+D A^{\prime}\right) \\
& D_{C}=C^{+}=C \oplus\left(U B A+D B^{\prime} A^{\prime}\right)
\end{aligned}
$$

When $\mathrm{U}=0$ and $\mathrm{D}=1$, these equations reduce to

$$
\begin{array}{ll}
D_{A}=A^{+}=A \oplus 1=A^{\prime} & (A \text { change state every clock cycle }) \\
D_{B}=B^{+}=B \oplus A^{\prime} & (B \text { change state when } A=0) \\
D_{C}=C^{+}=C \oplus B^{\prime} A^{\prime} & (C \text { change state when } B=A=0)
\end{array}
$$

12.3 Design of Binary Counters

Loadable Counter with Count Enable (Figure 12-19)

Loadable counter
(Figure 12-19(a))

(a)

Summarizes the counter operation
(Figure 12-19(b))

$C l r \mathrm{~N}$	$L d$	$C t$	C^{+}	B^{+}	A^{+}	
0	\times	\times	0	0	0	
1	1	\times	D_{C}	D_{B}	D_{A}	(load)
1	0	0	C	B	A	(no change)
1	0	1	present state +1			

(b)

12.3 Design of Binary Counters

Circuit for Figure 12-19 (Figure 12-20)

12.3 Design of Binary Counters

The next-state equations for the counter of Figure 12-20

$$
\begin{aligned}
& A^{+}=D_{A}=\left(L d^{\prime} \cdot A+L d \cdot D_{\text {Ain }}\right) \oplus L d^{\prime} \cdot C t \\
& B^{+}=D_{B}=\left(L d^{\prime} \cdot B+L d \cdot D_{B i n}\right) \oplus L d^{\prime} \cdot C t \cdot A \\
& C^{+}=D_{c}=\left(L d^{\prime} \cdot C+L d \cdot D_{C i n}\right) \oplus L d^{\prime} \cdot C t \cdot B \cdot A
\end{aligned}
$$

12.4 Counters for Other Sequences

The sequence of states of a counter is not in straight binary order.

State Graph for Counter

(Figure 12-21)

State Table for Figure 21.21
(Table 12-3)

C	B	A	C^{+}	B^{+}	A^{+}
0	0	0	1	0	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	-	-	-
1	1	0	-	-	-
1	1	1	0	1	0

12.4 Counters for Other Sequences

The next-state maps in Figure 12-22(a) are easily plotted from inspection of Table 12-3 \rightarrow Use T-F/F

Figure 12-22

(a) Next-state maps for Table 12-3

$$
T_{C}=C^{\prime} B^{\prime}+C B
$$

$T_{B}=C^{\prime} A+C B^{\prime}$
(b) Derivation of T inputs

$$
T_{A}=C+B
$$

12.4 Counters for Other Sequences

12.4 Counters for Other Sequences

Timing Diagram
for Figure 12-23
(Figure 12-24)

State Graph for
Counter
(Figure 12-25)

12.4 Counters for Other Sequences

Summary:

1.Form a state table which gives the next F/F states for each combination of present F/F states.
2. Plot the next-state maps from the table.
3.Plot a T input map for each F/F .
4.Find the T input equations from the maps and realize the circuit.

12.4 Counters for Other Sequences

Counter Design Using D Flip-Flop

Following equations can be read from Figure 12-22(a):

$$
\begin{aligned}
& D_{C}=C^{+}=B^{\prime} \quad D_{B}=B^{+}=C+B A^{\prime} \\
& D_{A}=A^{+}=C A^{\prime}+B A^{\prime}=A^{\prime}(C+B)
\end{aligned}
$$

Counter of Figure 12-21
Using D Flip-Flops
(Figure 12-26)

12.5 Counter Design Using S-R and J-K Flip-Flops

S-R Flip-Flop Inputs (Table 12-5)

12.5 Counter Design Using S-R and J-K Flip-Flops

With columns added for the S and R flip-flop inputs (Table 12-6)

C	B	A	C^{+}	B^{+}	A^{+}	S_{C}	R_{C}	S_{B}	R_{B}	S_{A}	R_{A}
0	0	0	1	0	0	1	0	0	\times	0	\times
0	0	1	-	-	-	\times	\times	\times	\times	\times	\times
0	1	0	0	1	1	0	\times	\times	0	1	0
0	1	1	0	0	0	0	\times	0	1	0	1
1	0	0	1	1	1	\times	0	1	0	1	0
1	0	1	-	-	-	\times	\times	\times	\times	\times	\times
1	1	0	-	-	-	\times	\times	\times	\times	\times	\times
1	1	1	0	1	0	0	1	\times	0	0	1

12.5 Counter Design Using S-R and J-K Flip-Flops

Counter Design
Using
S-R Flip-Flop

12.5 Counter Design Using S-R and J-K Flip-Flops

J-K Flip-Flop Inputs (Table 12-7)

J	K	Q	Q^{+}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

(a)

Q	Q^{+}	J	K
0	0	$\int 0$	0
		$\{0$	
0	1	[1	0
		1	
1	0	0	1
		1	
1	1	$\int 0$	0
		$\{1$	

(b)

Q	Q^{+}	J	K
0	0	0	\times
0	1	1	\times
1	0	\times	1
1	1	\times	0

(c)

12.5 Counter Design Using S-R and J-K Flip-Flops

With columns added for the J and K flip-flop inputs (Table 12-8)

| C | B | A | C^{+} | B^{+} | A^{+} | J_{C} | K_{C} | J_{B} | K_{B} | J_{A} | K_{A} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | \times | 0 | \times | 0 | \times |
| 0 | 0 | 1 | - | - | - | \times | \times | \times | \times | \times | \times |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | \times | \times | 0 | 1 | \times |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | \times | \times | 1 | \times | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | \times | 0 | 1 | \times | 1 | \times |
| 1 | 0 | 1 | - | - | - | \times | \times | \times | \times | \times | \times |
| 1 | 1 | 0 | - | - | - | \times | \times | \times | \times | \times | \times |
| 1 | 1 | 1 | 0 | 1 | 0 | \times | 1 | \times | 0 | \times | 1 |

12.6 Derivation of Flip-Flop Input Equations-Summary

Counter of Figure 12-21
Using J-K Flip-Flops
(Figure 12-28)

(a)

(b)
(c)

12.6 Derivation of Flip-Flop Input Equations-Summary

Determination of Flip-Flop Input Equations from Next-State Equations
Using Karnaugh Maps (Table 12-9)

Type of Flip-Flop	Input	$Q=0$		$Q=1$		Rules for Forming Input Map From Next-State Map*	
		$Q^{+}=0$	$Q^{+}=1$	$Q^{+}=0$	$Q^{+}=1$	$\begin{gathered} Q=0 \text { Half of } \\ \text { Map } \end{gathered}$	$\begin{aligned} Q= & 1 \text { Half of } \\ & \text { Map } \end{aligned}$
Delay	D	0	1	0	1	no change	no change
Trigger	T	0	1	1	0	no change	complement
Set-Reset	S	0	1		X	no change	replace 1's with X's** $^{\prime}$
	R	X	0	1	0	replace 0 's with $\mathrm{X}^{\prime} \mathrm{s}^{* *}$	complement
J-K	J	$\begin{aligned} & 0 \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & x \end{aligned}$	x	x	no change fill in with X 's	fill in with X 's

Q^{+}means the next state of Q
X is a don't care
'Always copy X's from the next-state map onto the input maps first.
"Fill in the remaining squares with 0 's:

12.6 Derivation of Flip-Flop Input Equations-Summary

Example (illustrating the use of Table 12-9)

Next-state map

$T=A^{\prime} B+A B^{\prime}+Q B$
T input map

S-R input maps

$J=A^{\prime} B+A B^{\prime}$

J-K input maps

12.6 Derivation of Flip-Flop Input Equations-Summary

Derivation of
Flip-Flop Input
Equations Using
4-Variable Maps
(Figure 12-29)

(a)

(b)

